NEW CHARACTERIZATIONS OF SOME Lp-SPACES

نویسندگان

  • RUSSELL S. JENKINS
  • RAMESH V. GARIMELLA
چکیده

For a complete measure space (X,Σ,μ), we give conditions which force Lp(X,μ), for 1 ≤ p < ∞, to be isometrically isomorphic to p(Γ) for some index set Γ which depends only on (X,μ). Also, we give some new characterizations which yield the inclusion Lp(X,μ)⊂ Lq(X,μ) for 0<p < q.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces

In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...

متن کامل

$G$-Frames for operators in Hilbert spaces

$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...

متن کامل

On $beta-$topological vector spaces

We introduce and study a new class of spaces, namely $beta-$topological vector spaces via $beta-$open sets. The relationships among these spaces with some existing spaces are investigated. In addition, some important and useful characterizations of $beta-$topological vector spaces are provided.  

متن کامل

Coarse Embeddings of Metric Spaces into Banach Spaces

There are several characterizations of coarse embeddability of a discrete metric space into a Hilbert space. In this note we give such characterizations for general metric spaces. By applying these results to the spaces Lp(μ), we get their coarse embeddability into a Hilbert space for 0 < p < 2. This together with a theorem by Banach and Mazur yields that coarse embeddability into l2 and into L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000